Plecostonol, a New ent-Kaurene Diterpenoid from Plectranthus coesta BuchHam. \dagger

Anil P. Phadnis, Sarita A. Patwardhan, Amrit S. Gupta *, Narayanadatta N. Dhaneshwar, Sudam S. Tavale, and Tayur N. Gururow.
National Chemical Laboratory, Pune-411 008, India.

Plecostonol, a new diterpenoid having a rare 3,20-epoxy-ent-kaurene skeleton, has been isolated from Plectranthus coesta Buch-Ham, and assigned the structure ent-3 $\beta, 20 \beta$-epoxy- $3 \alpha, 7 \beta, 14 \alpha$-trihydroxy-kaur-16-ene-15-one (1) on the basis of its spectral properties and an X-ray crystallographic determination.

In the course of our work on plant pest control agents, we collected Plectranthus coesta Buch-Ham (Labiatae), a shrub from the Purandar area of Maharashtra, India which has not so far been chemically investigated. Here we report the isolation and identification of a novel type of diterpenoid hemiketal, plecostonol (1), possessing a rare 3,20-epoxy-ent-kaurene type skeleton, along with β-sitosterol and triterpenoid acids, viz. ursolic and oleanolic acids. Novelrabdosin ${ }^{1}$ isolated from Rabdosia nervosa is the only other example of a 3,20-epoxy-entkaurene skeleton reported recently in the literature.

An acetone extract of the shade dried plant afforded, on repeated chromatography, a pure crystalline compound, plecostonol (1) $(0.016 \%), \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}\left(M^{+}, 348\right)$, m.p. $246-248{ }^{\circ} \mathrm{C} . \ddagger$ The presence of a five-membered ketone group conjugated with the α-methylene group of (1) is indicated by the following spectral data: $\lambda_{\text {max. }} 232 \mathrm{~nm} ; v_{\text {max. }} 1720$ and $1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ n.m.r. (Table 1) $\delta 5.28$ and 5.93 (each 1 H, s); ${ }^{13} \mathrm{C}$ n.m.r. (Table 2) $\delta 116.7$ (t), 148.9 (s) ($>\mathrm{C}=\mathrm{CH}_{2}$), and 206.7 (s) (ketone). Compound (1) also shows a strong absorption in the i.r. spectrum ($3460-3340$) due to hydroxy groups. On acetylation, (1) gave the diacetate (2) [singlets at $\delta 1.97(3 \mathrm{H})$ and 2.04 $(3 \mathrm{H})]$ and treatment with dimethyl sulphate yielded the dimethyl ether (3) [singlet at $\delta 3.40(6 \mathrm{H})$]. Absorptions at $v_{\text {max }}$.

3370 and $3450 \mathrm{~cm}^{-1}$ in (2) and (3), respectively suggested that out of the five oxygen atoms in (1), at least three are in hydroxyl groups. From the above, it was deduced that plecostonol had the 15 -oxo-ent-kaur-16-ene as its basic skeleton.

The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (1) exhibited only two methyl signals ($\delta 1.09, \mathrm{~s}, 6 \mathrm{H}$) and two double doublets assignable to the $-\mathrm{OCH}_{2} \xlongequal[\text { | }]{\text { C group: }} \delta 3.7(1 \mathrm{H}, J 7.5$ and 3.75 Hz$)$ and $4.28(1 \mathrm{H}, J$ 7.5 and 2.5 Hz); the ${ }^{13} \mathrm{C}$ n.m.r. spectrum showed signals at $\delta 67.7$

[^0](t) $\left(\mathrm{OCH}_{2} \stackrel{\text { - }}{\text { - }}\right)$ and 97.4 (s) $(\mathrm{HOCO}-)$. These spectral data reveal a partial structure $\mathrm{HOCOCH}_{2} \stackrel{\mid}{\mathrm{C}}$ - in plecostonol. The ${ }^{1} \mathrm{H}$ n.m.r. data of the derivatives (2) and (3) (Table 2) are in accord with this. The foregoing evidence suggests the presence of either a 3,20 - or a 7,20 -epoxy system in (1). The dd splitting pattern of CHOAc in (2) (Figure 1) ($\delta 5.12,1 \mathrm{H}, \mathrm{dd}, J 13$ and 5.5 Hz) appears to be characteristic of $7-\mathrm{H}^{2}$ and so supports the existence of a 3,20 -epoxy ring. A 1 H singlet at $\delta 5.47$ in (2) could be ascribed to $14-\mathrm{H}_{8} \cdot{ }^{3}$ The above facts suggest ent$3 \beta, 20 \beta-3 \alpha, 7,14 \beta$-trihydroxykaur-16-en-15-one as the gross structure for plecostonol. Since a suitable crystal could be obtained for X-ray analysis we were able to assign the complete stereo structure as ent-3 $\beta, 20 \beta$-epoxy- $3 \alpha, 7 \beta, 14 \alpha$-trihydroxykaur16 -en-15-one (1).

Experimental

Optical rotations and u.v. spectra were taken for solutions in methanol. I.r. spectra were recorded in Nujol mulls and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra, unless otherwise stated, in deuteriated chloroform with SiMe_{4} as internal standard. Mass spectra were determined at 70 eV using a direct inlet system.

Isolation of Plecostonol (1).-The whole shade-dried plant of P.coesta (roots, stem, leaves, and flowers) was powdered and the powdered material (3.5 kg) was extracted with acetone (3×101) at room temperature. The acetone was removed at $40^{\circ} \mathrm{C} / 25 \mathrm{mmHg}$ in a rotavapour and the dark extract (98 g) was chromatographed over a silica gel column ($72 \times 6.8 \mathrm{~cm}$). The column was eluted successively with benzene [to give fraction $\mathrm{A}(12.0 \mathrm{~g})$], benzene-acetone $(90: 10)$ [to give fraction B $(28.5 \mathrm{~g})$], acetone [to give fraction $\mathrm{C}(44.0 \mathrm{~g})$], and methanol [to give fraction $\mathrm{D}(16.0 \mathrm{~g})$]. Fraction B was rechromatographed on silica gel. Benzene eluted β-sitosterol (0.5 g , m.p. $142^{\circ} \mathrm{C}$). Benzene-acetone (99:1) gave ursolic acid [8 g, m.p. (acetyl methyl ester) $252^{\circ} \mathrm{C}$] and oleanolic acid [0.2 g , m.p. (acetyl methyl ester) $212-215^{\circ} \mathrm{C}$]. Fraction C was rechromatographed on silica gel with benzene-acetone ($70-50: 30-50$) to give a crude solid (12.2 g) which was rechromatographed to give a white solid (7.35 g) with benzene-acetone ($90-80: 10-20$). The white solid on flash chromatography (3 batches) on a silica gel column (t.l.c. grade, $8 \mathrm{~cm} \times 3 \mathrm{~cm}$) with ethyl acetate as eluant gave, in the initial fraction, pure white solid, plecostonol (1) $(0.575 \mathrm{~g})$, m.p. $246-248{ }^{\circ} \mathrm{C}$ (from methanol); $[\alpha]_{\mathrm{D}}-178.72^{\circ}$ (c $0.094, \mathrm{MeOH}$) (Found: C, 68.6; H, 8.0. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$ requires C, $68.94 ; \mathrm{H}, 8.10 \%$); $\lambda_{\text {max. }}$. $(\mathrm{MeOH}) 232 \mathrm{~nm}(\varepsilon 6645) ; v_{\text {max }}$ (Nujol) $3460,3340,2930,2870,1720,1650,980$, and $920 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}[80$ $\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 1.09(6 \mathrm{H}, \mathrm{s}), 2.93(1 \mathrm{H}, \mathrm{br}), 3.70(1 \mathrm{H}, \mathrm{dd}, J 7.5$

Figure 1. ${ }^{1} \mathrm{H}$ N.m.r. spectrum ($\delta 2.5-6.5$) of plecostonyl diacetate (2)

Table 1. ${ }^{1} \mathrm{H}$ N.m.r. data of compounds (1)-(3)

Proton	δ p.p.m. (splitting pattern)		
	1	2	3
Gem Me	1.09 (6 H) (s)	1.02 (3 H) (s)	1.03 (3 H) (s)
		1.05 (3 H) (s)	1.07 (3 H) (s)
13-H	2.93 (br)	3.00 (br)	3.03 (br)
$\mathrm{CH}_{2} \mathrm{O}$	3.7 (1 H)	3.85 (1 H)	3.76 (1 H)
	(dd, J 7.5 and	(dd, J 15 and	(m)
	3.75 Hz)	3.75 Hz)	
	4.28 (1 H)	4.49 (1 H)	4.25 (1 H)
	(dd, $J 7.5$ and	(dd, J 15 and	(m, C-20)
	2.5 Hz)	5 Hz)	
CHOR (7-H)	4.73	5.12	4.25 (1 H)
	(d, $J 5 \mathrm{~Hz}$)	($J 13$ and 5.5 Hz)	(m, 7-H)
$\begin{gathered} \mathrm{CHOR}(14-\mathrm{H}) \\ =\mathrm{CH}_{2} \end{gathered}$	5.43 (s)	5.47 (s)	5.1 (s)
	$5.28(1 \mathrm{H})(\mathrm{s})$	5.33 (1 H) (s)	5.37 (1 H) (s)
	5.93 (1 H) (s)	6.09 (1 H) (s)	6.08 (1 H) (s)

and 3.75 Hz$), 4.28(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 2.5 Hz$), 4.37(\mathrm{~s}), 4.73(1 \mathrm{H}$, d, $J 5 \mathrm{~Hz}), 5.28(1 \mathrm{H}, \mathrm{s}), 5.43(1 \mathrm{H}, \mathrm{s})$, and $5.93(1 \mathrm{H}, \mathrm{s}) ; m / z(\%)$ 348 ($M^{+} 26$), 330 (54), 317 (48), 312 (59), 302 (43), 290 (27.5), 284 (66), 257 (69), 243 (57.5), and 215 (100).

Plecostonyl Diacetate (2).—A mixture of (1) (0.1 g), fused sodium acetate (1.6 g), and acetic anhydride (23 ml) was heated on a steam-bath for 3 h . The mixture was poured onto ice-water and extracted with diethyl ether. The ether extract was repeatedly washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a crude product which on chromatography over silica gel afforded (2) (60 mg), m.p. $255-258^{\circ} \mathrm{C}$ (from methanol); $[\alpha]_{\mathrm{D}}-68.7^{\circ}(c \quad 0.052, \mathrm{MeOH})$ (Found: C, 65.95; H, 7.4. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{7}$ requires $\mathrm{C}, 66.5 ; \mathrm{H}, 7.46 \%$) $v_{\text {max. }}$ (Nujol) 3370,2940 , $1745,1720,1655,1465,970$, and $900 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(80 \mathrm{MHz}$, CDCl_{3}, expanded scale, 1 div. $\left.=3 \mathrm{~Hz}\right) 1.02(3 \mathrm{H}, \mathrm{s}), 1.05(3 \mathrm{H}, \mathrm{s})$, $1.97(3 \mathrm{H}, \mathrm{s}), 2.04(3 \mathrm{H}, \mathrm{s}), 3.00(1 \mathrm{H}, \mathrm{br}), 3.85(1 \mathrm{H}, \mathrm{dd}, J 15$ and $3.75 \mathrm{~Hz}), 4.49(1 \mathrm{H}, \mathrm{dd}, J 15$ and 5 Hz$), 5.05$ and $5.20(1 \mathrm{H}, \mathrm{AB}$ system, $J 13$ and 5.5 Hz), $5.33(1 \mathrm{H}, \mathrm{s}), 5.47(1 \mathrm{H}, \mathrm{s})$, and $6.09(1 \mathrm{H}$, s); $m / z(\%) 432\left(M^{+} 6\right), 372(27), 344(15), 330(57), 329(39), 312$ (100), 294 (16), 284 (98.5), 269 (49), and 243 (43).

Plecostonyl Dimethyl Ether (3).-A mixture of (1) (0.2 g), potassium carbonate (12 g), dimethyl sulphate (8 ml), and acetone (20 ml) was refluxed for 6 h ; it was then filtered and evaporated. The residue was heated with water (5 ml) on steambath for 0.5 h , cooled, and extracted with diethyl ether. The ether extract was washed with water and aqueous NaHCO_{3},

Table 2. ${ }^{13} \mathrm{C}$ N.m.r. spectrum of plecostonol (1) ${ }^{a}$

Carbon atom	δ p.p.m.	Multiplicity	Carbon atom	δ p.p.m.	Multiplicity
1	34.2^{c}	t	11	18.0	t
2	29.4^{d}	t	12	34.5^{c}	t
3	97.4^{c}	s	13	45.6^{2}	d
4	30.5	s	14	75.6	d
5	47.8^{b}	d	15	206.7	s
6	30.3^{d}	t	16	148.9	s
7	72.1^{d}	d	17	116.7	t
8	60.1^{d}	s	18	27.0	q
9	48.1^{b}	d	19	19.1	q
10	40.1	s	20	67.7	t

${ }^{a}$ The ${ }^{13} \mathrm{C}$ n.m.r. spectrum was obtained for a CDCl_{3} solution with Bruker WH-90 spectrometer. Chemical shifts are expressed in p.p.m. relative to internal $\mathrm{Me}_{4} \mathrm{Si} .{ }^{b-d}$ Assignments with the same sign may be interchanged.

Table 3. Fractional atomic co-ordinates ($\times 10^{4}$) with their standard deviations in parentheses.

	x	y	z
$\mathrm{C}(1)$	$3984(8)$	$-3175(8)$	$6217(7)$
$\mathrm{C}(2)$	$5342(8)$	$-3220(9)$	$5890(8)$
$\mathrm{C}(3)$	$6081(7)$	$-2139(8)$	$6209(6)$
$\mathrm{C}(4)$	$5567(7)$	$-948(8)$	$5856(6)$
$\mathrm{C}(5)$	$4092(8)$	$-1005(8)$	$5947(5)$
$\mathrm{C}(6)$	$3467(8)$	$243(8)$	$6086(6)$
$\mathrm{C}(7)$	$2053(7)$	$132(7)$	$6126(6)$
$\mathrm{C}(8)$	$1662(8)$	$-595(8)$	$6866(5)$
$\mathrm{C}(9)$	$2223(7)$	$-1891(8)$	$6789(5)$
$\mathrm{C}(10)$	$3698(7)$	$-1950(8)$	$6585(5)$
$\mathrm{C}(11)$	$1780(8)$	$-2712(8)$	$7482(6)$
$\mathrm{C}(12)$	$1706(10)$	$-2132(10)$	$8318(6)$
$\mathrm{C}(13)$	$1104(9)$	$-863(9)$	$8272(6)$
$\mathrm{C}(14)$	$1973(9)$	$-69(9)$	$7718(6)$
$\mathrm{C}(15)$	$203(7)$	$-799(7)$	$6933(5)$
$\mathrm{C}(16)$	$-111(7)$	$-896(7)$	$7810(5)$
$\mathrm{C}(17)$	$-1349(8)$	$-1030(7)$	$8084(5)$
$\mathrm{C}(18)$	$5885(10)$	$-810(10)$	$4953(6)$
$\mathrm{C}(19)$	$6208(8)$	$106(8)$	$6305(6)$
$\mathrm{C}(20)$	$4593(7)$	$-1826(7)$	$7333(5)$
$\mathrm{C}(21)$	$-819(10)$	$1448(10)$	$4549(6)$
$\mathrm{O}(1)$	$7378(4)$	$-2355(5)$	$6083(3)$
$\mathrm{O}(2)$	$5897(4)$	$-2127(5)$	$7087(3)$
$\mathrm{O}(3)$	$1454(5)$	$1311(5)$	$6124(4)$
$\mathrm{O}(4)$	$1517(5)$	$1151(5)$	$7732(4)$
$\mathrm{O}(5)$	$-503(5)$	$-881(5)$	$6349(3)$
$\mathrm{O}(6)$	$297(8)$	$2129(9)$	$4700(5)$

Figure 2. A perspective view of the molecule of plecostonol (1)

Table 4. Intramolecular bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ and their standard deviations in parentheses

$\mathrm{C}(1)-\mathrm{C}(2)$	1.52(1)	$\mathrm{C}(1)-\mathrm{C}(10) \quad 1.52(1)$	
$\mathrm{C}(2)-\mathrm{C}(3)$	1.52(1)	$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.5$	1.54(1)
$\mathrm{C}(3)-\mathrm{O}(1)$	$1.395(9)$	$\mathrm{C}(3)-\mathrm{O}(2) \quad 1.4$	1.45 (1)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.55(1)	$\mathrm{C}(4)-\mathrm{C}(18) \quad 1.5$	1.53(1)
$\mathrm{C}(4)-\mathrm{C}(19)$	1.54(1)	$\mathrm{C}(5)-\mathrm{C}(6) \quad 1.5$	1.55(1)
$\mathrm{C}(5)-\mathrm{C}(10)$	1.54(1)	$\mathrm{C}(6)-\mathrm{C}(7) \quad 1.4$	1.49(1)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.51(1)	$\mathrm{C}(7)-\mathrm{O}(3) \quad 1.46$	1.46(1)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.56(1)	$\mathrm{C}(8)-\mathrm{C}(14) \quad 1.55$	1.55(1)
$\mathrm{C}(8)-\mathrm{C}(15)$	1.55(1)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1.5$	1.58(1)
$\mathrm{C}(9)-\mathrm{C}(11)$	1.53(1)	$\mathrm{C}(10)-\mathrm{C}(20) \quad 1.55$	$1.55(1)$
$\mathrm{C}(11)-\mathrm{C}(12)$	1.52(1)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.55$	1.55(1)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.56(1)	$\mathrm{C}(13)-\mathrm{C}(16) \quad 1.4$	1.48(1)
$\mathrm{C}(14)-\mathrm{O}(4)$	1.44(1)	$\mathrm{C}(15)-\mathrm{C}(16) \quad 1.48$	1.48(1)
$\mathrm{C}(15)-\mathrm{O}(5)$	1.214(9)	$\mathrm{C}(16)-\mathrm{C}(17) \quad 1.38$	1.38(1)
$\mathrm{C}(20)-\mathrm{O}(2)$	1.463(9)	$\mathrm{C}(21)-\mathrm{O}(6)$	1.41(1)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	110.7(8)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	109.1(8)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	111.9(7)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$	107.9(7)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(2)$	106.3(7)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(1)$	115.6(7)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(2)$	108.5(7)	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{O}(2)$	106.1(6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	106.0(7)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(18)$	112.0(7)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(19)$	108.9(7)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(18)$	108.4(7)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(19)$	114.8(7)	$\mathrm{C}(18)-\mathrm{C}(4)-\mathrm{C}(19)$	107.0(7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	113.4(7)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	111.1(7)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	113.5(7)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	110.6(7)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	110.4(7)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(3)$	110.8(7)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{O}(3)$	111.5(7)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	109.1(7)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	117.6(7)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(15)$	113.7(7)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(14)$	110.0(7)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(15)$	103.9(6)
$\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{C}(15)$	101.5(7)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	115.0(7)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	112.2(7)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(11)$	115.4(7)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	106.9(7)	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	108.3(7)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(20)$	105.9(7)	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	112.2(7)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(20)$	108.3(7)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(20)$	114.7(7)
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	115.6(8)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	111.4(8)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	107.9(8)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$	110.6(8)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(16)$	102.6(7)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(13)$	100.8(7)
$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{O}(4)$	107.5(7)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(4)$	109.4(7)
$\mathrm{C}(8)-\mathrm{C}(15)-\mathrm{C}(16)$	107.4(6)	$\mathrm{C}(8)-\mathrm{C}(15)-\mathrm{O}(5)$	123.8(7)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{O}(5)$	128.8(7)	$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{C}(15)$	107.7(7)
$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{C}(17)$	130.0(8)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	122.2(7)
$\mathrm{C}(10)-\mathrm{C}(20)-\mathrm{O}(2)$	109.0(6)	$\mathrm{C}(3)-\mathrm{O}(2)-\mathrm{O}(20)$	113.6(6)

dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated and the residue purified by chromatography to give (3) (35 mg), m.p. $87-90^{\circ} \mathrm{C}$ (from methanol); $[\alpha]_{\mathrm{D}}-152.22^{\circ}(c 0.094, \mathrm{MeOH})$ (Found: C, $69.5 ; \mathrm{H}$,

Table 5. Some important torsion angles
Ring A

$C(10)-C(1)-C(2)-C(3)$	$13(1)^{\circ}$
$C(1)-C(2)-C(3)-C(4)$	$-67(1)$
$C(2)-C(3)-C(4)-C(5)$	$47.1(9)$
$C(3)-C(4)-C(5)-C(10)$	$19.1(9)$
$C(4)-C(5)-C(10)-C(1)$	$-70.2(9)$
$C(5)-C(10)-C(1)-C(2)$	$50(1)$

Ring Al

$C(10)-C(1)-C(2)-C(3)$	$13(1)$
$C(1)-C(2)-C(3)-O(2)$	$51.4(9)$
$C(2)-C(3)-O(2)-C(20)$	$-69.4(8)$
$C(3)-O(2)-C(20)-C(10)$	$15.5(8)$
$\mathrm{O}(2)-C(20)-C(10)-C(1)$	$49.7(8)$
$C(20)-C(10)-C(1)-C(2)$	$-65.0(9)$

Ring A2

$C(3)-C(4)-C(5)-C(10)$	$19.1(9)$
$C(4)-C(5)-C(10)-C(20)$	$43.6(9)$
$C(5)-C(10)-C(20)-O(2)$	$-64.7(8)$
$C(10)-C(20)-O(2)-C(3)$	$15.5(8)$
$C(20)-O(2)-C(3)-C(4)$	$51.1(8)$
$O(2)-C(3)-C(4)-C(5)$	$-69.8(8)$

Ring B

$C(5)-C(6)-C(7)-C(8)$	$65.1(9)$
$C(6)-C(7)-C(8)-C(9)$	$-62.0(9)$
$C(7)-C(8)-C(9)-C(10)$	$50.0(9)$
$C(8)-C(9)-C(10)-C(5)$	$-40.8(9)$
$C(9)-C(10)-C(5)-C(6)$	$42.0(9)$
$C(10)-C(5)-C(6)-C(7)$	$-54.9(9)$

Ring C

$C(8)-C(9)-C(11)-C(12)$	$-39(1)$
$C(9)-C(11)-C(12)-C(13)$	$43(1)$
$C(11)-C(12)-C(13)-C(14)$	$-61(1)$
$C(12)-C(13)-C(14)-C(8)$	$73.0(9)$
$C(13)-C(14)-C(8)-C(9)$	$-69.6(8)$
$C(14)-C(8)-C(9)-C(11)$	$54.2(9)$
$C(8)-C(14)-C(13)-C(16)$	$-43.8(8)$
$C(14)-C(13)-C(16)-C(15)$	$30.3(9)$
$C(13)-C(16)-C(15)-C(8)$	$-4.8(9)$
$C(16)-C(15)-C(8)-C(14)$	$-22.8(8)$
$C(15)-C(8)-C(14)-C(13)$	$40.0(8)$

Ring E

$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	$-39(1)$
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$43(1)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$	$50(1)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{C}(15)$	$-84.6(9)$
$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(8)$	$-4.8(9)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(8)-\mathrm{C}(9)$	$91.4(7)$
$\mathrm{C}(15)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	$-53.8(8)$

8.1. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5}$ requires C, $70.19 ; \mathrm{H}, 8.57 \%$), $v_{\text {max. }}$. (Nujol) 3450 , $2950,2870,1735,1653,1470,1390$, and $990 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(80 \mathrm{~Hz}$, CDCl_{3}) $1.03(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}), 3.03(1 \mathrm{H}, \mathrm{br}), 3.40(6 \mathrm{H}, \mathrm{s})$, $3.76(1 \mathrm{H}, \mathrm{m}), 4.25(2 \mathrm{H}, \mathrm{m}), 5.1(1 \mathrm{H}, \mathrm{br}), 5.37(1 \mathrm{H}, \mathrm{s})$, and $6.08(1$ $\mathrm{H}, \mathrm{s}) ; m / z(\%) 376\left(M^{+}, 2\right), 362(48), 330(63), 317(78), 312(59)$, 302 (18.5), 299 (28), 293 (20), 287 (24), 284 (46), and 257 (100).

Crystallographic Structure Determination of Plecostonol (1).-Crystal Data. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5} \cdot \mathrm{CH}_{3} \mathrm{OH}, M=378.5$. Orthorhombic, space group $P 2_{1} 2_{1} 2_{1}\left(D_{2}^{4}\right.$; No. 19), $a=10.472(1)$, $b=11.132(1), c=16.405(2) \AA, U=1912.4 \AA^{3}, D_{\mathrm{c}}=1.315 \mathrm{~g}$
$\mathrm{cm}^{-3}, Z=4, F(000)=816.0$. Monochromatic $\mathrm{Mo}-K_{\alpha}$ radiation, $\lambda=0.7107 \AA, \mu=0.11 \mathrm{~cm}^{-1}$. Data collection was done on the crystal (dimensions $0.40 \times 0.30 \mathrm{~mm}$), enclosed in a Lindemann capillary.

Structure determination. A unique data set was measured within the limit of $2 \theta_{\text {max. }}=47^{\circ}$ using a CAD $4 \mathrm{~F}-11 \mathrm{M}$ four circle diffractometer in the conventional $\omega-2 \theta$ scan. 1652 Independent reflections were obtained, 1245 of which with $I>3 \sigma(I)$ were considered 'observed' and were used in the least squares refinement without absorption correction. The structure was solved by direct methods using MULTAN-78. ${ }^{4}$ A full matrix least-squares refinement ${ }^{5}$ was used with anisotropic temperature factors for the non-hydrogen atoms. The hydrogen atoms were located on the basis of stereochemical considerations (verified by difference Fourier synthesis) but were not refined. The final R value at convergence was 0.063 . A Cruickshank type ${ }^{6}$ weighting scheme was employed with $a=$ $4.0, b=1.0$ and $c=0.03$. The atomic scattering factors were taken from the International Tables for X-ray Crystallography. ${ }^{7}$ Tables of thermal parameters and hydrogen coordinates are available as a supplementary publication [SUP no. 56449 (5 pp.$)$]. Copies of the structure factors are available from the Editorial office.*

Discussion

The atomic co-ordinates for the non-hydrogen atoms are given in Table 3. A perspective view of the molecule is shown in Figure 2, Table 4 gives bond lengths and angles and Table 5 gives torsion angles for the rings.

Rings $\mathrm{A}, \mathrm{A}-1$ and $\mathrm{A}-2$ have slightly distorted tub boat conformations. ${ }^{8}$ Rings B and C have considerably distorted chair conformations. ${ }^{9}$ The five-membered ring D assumes a slightly distorted envelope conformation with $C(14)$ as its flap. The seven membered ring consisting of atoms $C(8), C(9), C(11)$, $C(12), C(13), C(16)$, and $C(15)$ assumes a boat conformation. ${ }^{10}$ The sums of torsion angles for rings \mathbf{B} and C , a measure of the degree of distortion, are 314.8 and 339.8°, respectively, comparable with 335° for a normal cyclohexane ring. ${ }^{11}$ That there is considerable strain in the structure can be seen from the values of tetrahedral $\mathrm{C}-\mathrm{C}-\mathrm{C}$ valence angles varying from 101 105°, the greatest difference being in the five-membered ring.

* For details of the Supplementary Publications scheme, see Instructions for Authors (1986) J. Chem. Soc., Perkin Trans. 1, 1986, Issue 1.

The crystal structure is stabilized by intermolecular hydrogen bonds. The hydrogen attached to $O(1)(x, y, z)$ participates in the hydrogen bond with carbonyl oxygen $\mathrm{O}(5)(1+x, y, z)$, $\mathrm{O}(1) \cdots \mathrm{O}(5)=2.79 \AA$. The atom $\mathrm{O}(1)$ also forms a hydrogen bond with $\mathrm{O}(4)\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z\right)$, involving $\mathrm{HO}(4)$ attached to $\mathrm{O}(4) \cdot[\mathrm{O}(1) \cdots \mathbf{O}(4)=2.81 \AA]$.

Acknowledgements

Thanks are due to Dr V. D. Vartak, M. A. C. S., Pune, who identified the plant and helped in its collection.

References

1 H. Sun, Q. Zhao, J. Cha, H. Wang, Z. Lin, D. Wang, and Y. Gong, Yunnan Zhiwu Yanjiu, 1984, 6, 235. (Chem. Abstr. 1984, 101, 207578 u).
2 I. Kubo, I. Miura, K. Nakanishi, T. Kamikawa, J. Isobe, and T. Kubota, J. Chem. Soc., Chem. Commun., 1977, 555.
3 E. Fujita, T. Fujita, H. Katayama, M. Shibuya, and T. Shingu, J. Chem. Soc. C, 1970, 1674.
4 P. Main, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Woolfson, 'MULTAN-78, A system of computer programs for the automatic solution of crystal structures from X-ray diffraction data,' Universities of York and Louvain, 1978.
5 P. K. Gantzel, R. A. Sparks, and K. N. Trueblood, 'LALS, Full matrix least-squares refinement of positional and thermal parameters and scale factors,' University of California, Los Angeles, 1961.

6 D. W. J. Cruickshank, D. E. Philling, A. Bujosa, F. M. Lovell, and M. R. Truter, 'Computing methods and the phase problem in X-ray crystal structure analysis,' Pergamon Press, New York, 1961.
7 International Tables for ' X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. IV, p. 71.
8 C. Van der Ende, B. Offereins, and C. Romers, Acta Crystallogr., Sect. B, 1974, 30, 1947.
9 M. Mukherji and A. K. Mukherji, Acta Crystallogr., Sect. C, 1984, 40, 983.
10 J. B. Hendrickson, J. Am. Chem. Soc., 1964, 86, 4854.
11 E. J. Gabe, F. L. Lee, and S. M. Boudreau, Acta Crystallogr., Sect. B, 1982, 38, 2975.

[^0]: \dagger N. C. L. Communication No. 3871
 \ddagger When kept, the crystals of plecostonol become translucent, probably owing to loss of methanol trapped in the crystals as shown by X-ray studies.

